The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 61 – 80 of 238

Showing per page

Diophantine equations with Euler polynomials

Dijana Kreso, Csaba Rakaczki (2013)

Acta Arithmetica

We determine decomposition properties of Euler polynomials and using a strong result relating polynomial decomposition and diophantine equations in two separated variables, we characterize those g(x) ∈ ℚ [x] for which the diophantine equation - 1 k + 2 k - + ( - 1 ) x x k = g ( y ) with k ≥ 7 may have infinitely many integer solutions. Apart from the exceptional cases we list explicitly, the equation has only finitely many integer solutions.

Existence and reduction of generalized Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials

Luis M. Navas, Francisco J. Ruiz, Juan L. Varona (2019)

Archivum Mathematicum

One can find in the mathematical literature many recent papers studying the generalized Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials, defined by means of generating functions. In this article we clarify the range of parameters in which these definitions are valid and when they provide essentially different families of polynomials. In particular, we show that, up to multiplicative constants, it is enough to take as the “main family” those given by 2 λ e t + 1 α e x t = n = 0 n ( α ) ( x ; λ ) t n n ! , λ { - 1 } , and as an “exceptional family”...

Currently displaying 61 – 80 of 238