Displaying 21 – 40 of 58

Showing per page

On sequences over a finite abelian group with zero-sum subsequences of forbidden lengths

Weidong Gao, Yuanlin Li, Pingping Zhao, Jujuan Zhuang (2016)

Colloquium Mathematicae

Let G be an additive finite abelian group. For every positive integer ℓ, let d i s c ( G ) be the smallest positive integer t such that each sequence S over G of length |S| ≥ t has a nonempty zero-sum subsequence of length not equal to ℓ. In this paper, we determine d i s c ( G ) for certain finite groups, including cyclic groups, the groups G = C C 2 m and elementary abelian 2-groups. Following Girard, we define disc(G) as the smallest positive integer t such that every sequence S over G with |S| ≥ t has nonempty zero-sum subsequences...

On some universal sums of generalized polygonal numbers

Fan Ge, Zhi-Wei Sun (2016)

Colloquium Mathematicae

For m = 3,4,... those pₘ(x) = (m-2)x(x-1)/2 + x with x ∈ ℤ are called generalized m-gonal numbers. Sun (2015) studied for what values of positive integers a,b,c the sum ap₅ + bp₅ + cp₅ is universal over ℤ (i.e., any n ∈ ℕ = 0,1,2,... has the form ap₅(x) + bp₅(y) + cp₅(z) with x,y,z ∈ ℤ). We prove that p₅ + bp₅ + 3p₅ (b = 1,2,3,4,9) and p₅ + 2p₅ + 6p₅ are universal over ℤ, as conjectured by Sun. Sun also conjectured that any n ∈ ℕ can be written as p ( x ) + p ( y ) + p 11 ( z ) and 3p₃(x) + p₅(y) + p₇(z) with x,y,z ∈ ℕ; in...

On sum-product representations in q

Mei-Chu Chang (2006)

Journal of the European Mathematical Society

The purpose of this paper is to investigate efficient representations of the residue classes modulo q , by performing sum and product set operations starting from a given subset A of q . We consider the case of very small sets A and composite q for which not much seemed known (nontrivial results were recently obtained when q is prime or when log | A | log q ). Roughly speaking we show that all residue classes are obtained from a k -fold sum of an r -fold product set of A , where r log q and log k log q , provided the residue sets...

On sum-sets and product-sets of complex numbers

József Solymosi (2005)

Journal de Théorie des Nombres de Bordeaux

We give a simple argument that for any finite set of complex numbers A , the size of the the sum-set, A + A , or the product-set, A · A , is always large.

Currently displaying 21 – 40 of 58