The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We give a combinatorial interpretation for the positive moments of the values at the edge
of the critical strip of the -functions of modular forms of and . We
deduce some results about the asymptotics of these moments. We extend this interpretation
to the moments twisted by the eigenvalues of Hecke operators.
In the paper sufficient conditions for the -density of a set of positive integers in terms of logarithmic densities are given. They differ substantially from those derived previously in terms of asymptotic densities.
Currently displaying 1 –
3 of
3