The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A slight modification of the proof of Szemerédi’s cube lemma gives that if a set satisfies , then must contain a non-degenerate Hilbert cube of dimension . In this paper we prove that in a random set determined by for , the maximal dimension of non-degenerate Hilbert cubes is a.e. nearly and determine the threshold function for a non-degenerate -cube.
Currently displaying 1 –
6 of
6