On the existence of a density
The product w = u ⊗ v of two sequences u and v is a naturally defined sequence on the alphabet of pairs of symbols. Here, we study when the product w of two balanced sequences u,v is balanced too. In the case u and v are binary sequences, we prove, as a main result, that, if such a product w is balanced and deg(w) = 4, then w is an ultimately periodic sequence of a very special form. The case of arbitrary alphabets is approached in the last section. The partial results obtained and the problems...
The product w = u ⊗ v of two sequences u and v is a naturally defined sequence on the alphabet of pairs of symbols. Here, we study when the product w of two balanced sequences u,v is balanced too. In the case u and v are binary sequences, we prove, as a main result, that, if such a product w is balanced and deg(w) = 4, then w is an ultimately periodic sequence of a very special form. The case of arbitrary alphabets is approached in the last section. The partial results obtained and the problems...
Let K be a finite set of lattice points in a plane. We prove that if |K| is sufficiently large and |K+K| < (4 - 2/s)|K| - (2s-1), then there exist s - 1 parallel lines which cover K. We also obtain some more precise structure theorems for the cases s = 3 and s = 4.