Displaying 281 – 300 of 350

Showing per page

Single polynomials that correspond to pairs of cyclotomic polynomials with interlacing zeros

James McKee, Chris Smyth (2013)

Open Mathematics

We give a complete classification of all pairs of cyclotomic polynomials whose zeros interlace on the unit circle, making explicit a result essentially contained in work of Beukers and Heckman. We show that each such pair corresponds to a single polynomial from a certain special class of integer polynomials, the 2-reciprocal discbionic polynomials. We also show that each such pair also corresponds (in four different ways) to a single Pisot polynomial from a certain restricted class, the cyclogenic...

Specializations of one-parameter families of polynomials

Farshid Hajir, Siman Wong (2006)

Annales de l’institut Fourier

Let K be a number field, and suppose λ ( x , t ) K [ x , t ] is irreducible over K ( t ) . Using algebraic geometry and group theory, we describe conditions under which the K -exceptional set of λ , i.e. the set of α K for which the specialized polynomial λ ( x , α ) is K -reducible, is finite. We give three applications of the methods we develop. First, we show that for any fixed n 10 , all but finitely many K -specializations of the degree n generalized Laguerre polynomial L n ( t ) ( x ) are K -irreducible and have Galois group S n . Second, we study specializations...

The Bernoullian of a Matrix. (A Generalization of the Bernoulli Numbers)

Esayas George Kundert (1982)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si associano ad una matrice infinita di un certo tipo altre due matrici dello stesso tipo, dette rispettivamente bernoulliana e antibernoulliana di A. Si studiano alcune proprietà di queste matrici. Si ottiene in tal via una generalizzazione dei classici numeri di Bernoulli.

Currently displaying 281 – 300 of 350