Previous Page 2

Displaying 21 – 25 of 25

Showing per page

On the mean value of the mixed exponential sums with Dirichlet characters and general Gauss sum

Yongguang Du, Huaning Liu (2013)

Czechoslovak Mathematical Journal

The main purpose of the paper is to study, using the analytic method and the property of the Ramanujan’s sum, the computational problem of the mean value of the mixed exponential sums with Dirichlet characters and general Gauss sum. For integers m , n , k , q , with k 1 and q 3 , and Dirichlet characters χ , χ ¯ modulo q we define a mixed exponential sum C ( m , n ; k ; χ ; χ ¯ ; q ) = a = 1 q w i d t h 0 p t h e i g h t 1 e m ' χ ( a ) G k ( a , χ ¯ ) e m a k + n a k ¯ q , with Dirichlet character χ and general Gauss sum G k ( a , χ ¯ ) as coefficient, where ' denotes the summation over all a such that ( a , q ) = 1 , a a ¯ 1 mod q and e ( y ) = e 2 π i y . We mean value of m χ χ ¯ | C ( m , n ; k ; χ ; χ ¯ ; q ) | 4 , and...

On the r -free values of the polynomial x 2 + y 2 + z 2 + k

Gongrui Chen, Wenxiao Wang (2023)

Czechoslovak Mathematical Journal

Let k be a fixed integer. We study the asymptotic formula of R ( H , r , k ) , which is the number of positive integer solutions 1 x , y , z H such that the polynomial x 2 + y 2 + z 2 + k is r -free. We obtained the asymptotic formula of R ( H , r , k ) for all r 2 . Our result is new even in the case r = 2 . We proved that R ( H , 2 , k ) = c k H 3 + O ( H 9 / 4 + ε ) , where c k > 0 is a constant depending on k . This improves upon the error term O ( H 7 / 3 + ε ) obtained by G.-L. Zhou, Y. Ding (2022).

On the torsion of the Jacobians of the hyperelliptic curves y² = xⁿ + a and y² = x(xⁿ+a)

Tomasz Jędrzejak (2016)

Acta Arithmetica

Consider two families of hyperelliptic curves (over ℚ), C n , a : y ² = x + a and C n , a : y ² = x ( x + a ) , and their respective Jacobians J n , a , J n , a . We give a partial characterization of the torsion part of J n , a ( ) and J n , a ( ) . More precisely, we show that the only prime factors of the orders of such groups are 2 and prime divisors of n (we also give upper bounds for the exponents). Moreover, we give a complete description of the torsion part of J 8 , a ( ) . Namely, we show that J 8 , a ( ) t o r s = J 8 , a ( ) [ 2 ] . In addition, we characterize the torsion parts of J p , a ( ) , where p is an odd prime, and...

Currently displaying 21 – 25 of 25

Previous Page 2