Page 1

Displaying 1 – 4 of 4

Showing per page

À la recherche de petites sommes d'exponentielles

Étienne Fouvry, Philippe Michel (2002)

Annales de l’institut Fourier

Soit f ( x ) une fraction rationnelle à coefficients entiers, vérifiant des hypothèses assez générales. On prouve l’existence d’une infinité d’entiers n , ayant exactement deux facteurs premiers, tels que la somme d’exponentielles x = 1 n exp ( 2 π i f ( x ) / n ) soit en O ( n 1 2 - β f ) , où β f > 0 est une constante ne dépendant que de la géométrie de f . On donne aussi des résultats de répartition du type Sato-Tate, pour certaines sommes de Salié, modulo n , avec n entier comme ci- dessus.

A note on arithmetic Diophantine series

Alexander E. Patkowski (2021)

Czechoslovak Mathematical Journal

We consider an asymptotic analysis for series related to the work of Hardy and Littlewood (1923) on Diophantine approximation, as well as Davenport. In particular, we expand on ideas from some previous work on arithmetic series and the RH. To accomplish this, Mellin inversion is applied to certain infinite series over arithmetic functions to apply Cauchy's residue theorem, and then the remainder of terms is estimated according to the assumption of the RH. In the last section, we use simple properties...

Currently displaying 1 – 4 of 4

Page 1