Previous Page 3

Displaying 41 – 51 of 51

Showing per page

On the r -free values of the polynomial x 2 + y 2 + z 2 + k

Gongrui Chen, Wenxiao Wang (2023)

Czechoslovak Mathematical Journal

Let k be a fixed integer. We study the asymptotic formula of R ( H , r , k ) , which is the number of positive integer solutions 1 x , y , z H such that the polynomial x 2 + y 2 + z 2 + k is r -free. We obtained the asymptotic formula of R ( H , r , k ) for all r 2 . Our result is new even in the case r = 2 . We proved that R ( H , 2 , k ) = c k H 3 + O ( H 9 / 4 + ε ) , where c k > 0 is a constant depending on k . This improves upon the error term O ( H 7 / 3 + ε ) obtained by G.-L. Zhou, Y. Ding (2022).

On the sphere problem.

Fernando Chamizo, Henryk Iwaniec (1995)

Revista Matemática Iberoamericana

One of the oldest problems in analytic number theory consists of counting points with integer coordinates in the d-dimensional ball. It is very easy to find a main term for the counting function, but the size of the error term is difficult to estimate (...).

Oscillations of Hecke eigenvalues at shifted primes.

Liangyi Zhao (2006)

Revista Matemática Iberoamericana

In this paper, we are interested in exploring the cancellation of Hecke eigenvalues twisted with an exponential sums whose amplitude is √n at prime arguments.

Currently displaying 41 – 51 of 51

Previous Page 3