Displaying 101 – 120 of 141

Showing per page

Primitive Points on a Modular Hyperbola

Igor E. Shparlinski (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

For positive integers m, U and V, we obtain an asymptotic formula for the number of integer points (u,v) ∈ [1,U] × [1,V] which belong to the modular hyperbola uv ≡ 1 (mod m) and also have gcd(u,v) =1, which are also known as primitive points. Such points have a nice geometric interpretation as points on the modular hyperbola which are "visible" from the origin.

Some new sums related to D. H. Lehmer problem

Han Zhang, Wenpeng Zhang (2015)

Czechoslovak Mathematical Journal

About Lehmer’s number, many people have studied its various properties, and obtained a series of interesting results. In this paper, we consider a generalized Lehmer problem: Let p be a prime, and let N ( k ; p ) denote the number of all 1 a i p - 1 such that a 1 a 2 a k 1 mod p and 2 a i + a ¯ i + 1 , i = 1 , ...

Ternary quadratic forms with rational zeros

John Friedlander, Henryk Iwaniec (2010)

Journal de Théorie des Nombres de Bordeaux

We consider the Legendre quadratic forms ϕ a b ( x , y , z ) = a x 2 + b y 2 - z 2 and, in particular, a question posed by J–P. Serre, to count the number of pairs of integers 1 a A , 1 b B , for which the form ϕ a b has a non-trivial rational zero. Under certain mild conditions on the integers a , b , we are able to find the asymptotic formula for the number of such forms.

Currently displaying 101 – 120 of 141