Primes in Arithmetic Progressions to Large Moduli. II.
For positive integers m, U and V, we obtain an asymptotic formula for the number of integer points (u,v) ∈ [1,U] × [1,V] which belong to the modular hyperbola uv ≡ 1 (mod m) and also have gcd(u,v) =1, which are also known as primitive points. Such points have a nice geometric interpretation as points on the modular hyperbola which are "visible" from the origin.
About Lehmer’s number, many people have studied its various properties, and obtained a series of interesting results. In this paper, we consider a generalized Lehmer problem: Let be a prime, and let denote the number of all such that and
We consider the Legendre quadratic formsand, in particular, a question posed by J–P. Serre, to count the number of pairs of integers , for which the form has a non-trivial rational zero. Under certain mild conditions on the integers , we are able to find the asymptotic formula for the number of such forms.