A multiple set version of the 3k-3 theorem.
A zero-sum sequence over ℤ is a sequence with terms in ℤ that sum to 0. It is called minimal if it does not contain a proper zero-sum subsequence. Consider a minimal zero-sum sequence over ℤ with positive terms and negative terms . We prove that h ≤ ⌊σ⁺/k⌋ and k ≤ ⌊σ⁺/h⌋, where . These bounds are tight and improve upon previous results. We also show a natural partial order structure on the collection of all minimal zero-sum sequences over the set i∈ ℤ : -n ≤ i ≤ n for any positive integer n.
Let K be an algebraic number field with non-trivial class group G and be its ring of integers. For k ∈ ℕ and some real x ≥ 1, let denote the number of non-zero principal ideals with norm bounded by x such that a has at most k distinct factorizations into irreducible elements. It is well known that behaves, for x → ∞, asymptotically like . In this article, it is proved that for every prime p, , and it is also proved that if and m is large enough. In particular, it is shown that for...
We prove that every set A ⊂ ℤ satisfying for t and δ in suitable ranges must be very close to an arithmetic progression. We use this result to improve the estimates of Green and Morris for the probability that a random subset A ⊂ ℕ satisfies |ℕ∖(A+A)| ≥ k; specifically, we show that .