Page 1

Displaying 1 – 6 of 6

Showing per page

A characterization of Eisenstein polynomials generating extensions of degree p 2 and cyclic of degree p 3 over an unramified 𝔭 -adic field

Maurizio Monge (2014)

Journal de Théorie des Nombres de Bordeaux

Let p 2 be a prime. We derive a technique based on local class field theory and on the expansions of certain resultants allowing to recover very easily Lbekkouri’s characterization of Eisenstein polynomials generating cyclic wild extensions of degree p 2 over p , and extend it to when the base fields K is an unramified extension of p .When a polynomial satisfies a subset of such conditions the first unsatisfied condition characterizes the Galois group of the normal closure. We derive a complete classification...

A fast algorithm for polynomial factorization over p

David Ford, Sebastian Pauli, Xavier-François Roblot (2002)

Journal de théorie des nombres de Bordeaux

We present an algorithm that returns a proper factor of a polynomial Φ ( x ) over the p -adic integers p (if Φ ( x ) is reducible over p ) or returns a power basis of the ring of integers of p [ x ] / Φ ( x ) p [ x ] (if Φ ( x ) is irreducible over p ). Our algorithm is based on the Round Four maximal order algorithm. Experimental results show that the new algorithm is considerably faster than the Round Four algorithm.

Currently displaying 1 – 6 of 6

Page 1