Page 1

Displaying 1 – 2 of 2

Showing per page

Roots of unity in definite quaternion orders

Luis Arenas-Carmona (2015)

Acta Arithmetica

A commutative order in a quaternion algebra is called selective if it embeds into some, but not all, of the maximal orders in the algebra. It is known that a given quadratic order over a number field can be selective in at most one indefinite quaternion algebra. Here we prove that the order generated by a cubic root of unity is selective for any definite quaternion algebra over the rationals with type number 3 or larger. The proof extends to a few other closely related orders.

Currently displaying 1 – 2 of 2

Page 1