Page 1 Next

Displaying 1 – 20 of 354

Showing per page

A fast numerical test of multivariate polynomial positiveness with applications

Petr Augusta, Petra Augustová (2018)

Kybernetika

The paper presents a simple method to check a positiveness of symmetric multivariate polynomials on the unit multi-circle. The method is based on the sampling polynomials using the fast Fourier transform. The algorithm is described and its possible applications are proposed. One of the aims of the paper is to show that presented algorithm is significantly faster than commonly used method based on the semi-definite programming expression.

A generalization of the Gauss-Lucas theorem

J. L. Díaz-Barrero, J. J. Egozcue (2008)

Czechoslovak Mathematical Journal

Given a set of points in the complex plane, an incomplete polynomial is defined as the one which has these points as zeros except one of them. The classical result known as Gauss-Lucas theorem on the location of zeros of polynomials and their derivatives is extended to convex linear combinations of incomplete polynomials. An integral representation of convex linear combinations of incomplete polynomials is also given.

A note on the pp conjecture for sheaves of spaces of orderings

Paweł Gładki (2016)

Communications in Mathematics

In this note we provide a direct and simple proof of a result previously obtained by Astier stating that the class of spaces of orderings for which the pp conjecture holds true is closed under sheaves over Boolean spaces.

A real nullstellensatz and positivstellensatz for the semipolynomials over an ordered field.

Laureano González-Vega, Henri Lombardi (1992)

Extracta Mathematicae

Let K be an ordered field and R its real closure. A semipolynomial will be defined as a function from Rn to R obtained by composition of polynomial functions and the absolute value. Every semipolynomial can be defined as a straight-line program containing only instructions with the following type: polynomial, absolute value, sup and inf and such a program will be called a semipolynomial expression. It will be proved, using the ordinary real positivstellensatz, a general real positivstellensatz concerning...

A really elementary proof of real Lüroth's theorem.

T. Recio, J. R. Sendra (1997)

Revista Matemática de la Universidad Complutense de Madrid

Classical Lüroth theorem states that every subfield K of K(t), where t is a transcendental element over K, such that K strictly contains K, must be K = K(h(t)), for some non constant element h(t) in K(t). Therefore, K is K-isomorphic to K(t). This result can be proved with elementary algebraic techniques, and therefore it is usually included in basic courses on field theory or algebraic curves. In this paper we study the validity of this result under weaker assumptions: namely, if K is a subfield...

Currently displaying 1 – 20 of 354

Page 1 Next