On completeness of left-invariant Lorentz metrics on solvable Lie groups.
We study geodesic completeness for left-invariant Lorentz metrics on solvable Lie groups.
We study geodesic completeness for left-invariant Lorentz metrics on solvable Lie groups.
Let p be a prime number, and let [...] Q¯ p be the completion of Q with respect to the pseudovaluation w which extends the p-adic valuation vp. In this paper our goal is to give a characterization of closed subfields of [...] Q¯ p , the completion of Q with respect w, i.e. the spectral extension of the p-adic valuation vp on Q.
Let K be a non-Archimedean valued field which contains Qp, and suppose that K is complete for the valuation |·|, which extends the p-adic valuation. Vq is the closure of the set {aqn | n = 0,1,2,...} where a and q are two units of Zp, q not a root of unity. C(Vq --> K) (resp. C1(Vq --> K)) is the Banach space of continuous functions (resp. continuously differentiable functions) from Vq to K. Our aim is to find orthonormal bases for C(Vq --> K) and C1(Vq --> K).