A characterization of locally compact fields II
Let be the algebraic closure of and be the local field of formal power series with coefficients in . The aim of this paper is the description of the set of conjugacy classes of series of order for the composition law. This work is concerned with the formal power series with coefficients in a field of characteristic which are invertible and of finite order for the composition law. In order to investigate Oort’s conjecture, I give a description of conjugacy classes of series by means...
We construct some locally unbounded topological fields having topologically nilpotent elements; this answers a question of Heine. The underlying fields are subfields of fields of formal power series. In particular, we get a locally unbounded topological field for which the set of topologically nilpotent elements is an open additive subgroup. We also exhibit a complete locally unbounded topological field which is a topological extension of the field of p-adic numbers; this topological field is a...