-extremal valued fields.
Page 1 Next
Ershov, Yu.L. (2009)
Sibirskij Matematicheskij Zhurnal
W. Więsław (1975)
Fundamenta Mathematicae
W. Więsław (1978)
Colloquium Mathematicae
W. Więsław (1972)
Fundamenta Mathematicae
Jose M. Bayod, J. Martinez Maurica (1983)
Compositio Mathematica
C.N. Delzell (1984)
Inventiones mathematicae
J.L. García-Roig (1991)
Aequationes mathematicae
Serban S. Basarab (1979)
Journal für die reine und angewandte Mathematik
Dietmar Treiber (1974)
Mémoires de la Société Mathématique de France
Brzostowski, Szymon (2007)
Zeszyty Naukowe Uniwersytetu Jagiellońskiego. Universitatis Iagellonicae Acta Mathematica
Agnieszka Chlebowicz, Małgorzata Wołowiec-Musiał (2001)
Acta Mathematica et Informatica Universitatis Ostraviensis
Stany De Smedt, Andrew Khrennikov (1999)
Revista Matemática Complutense
We study dynamical systems in the non-Archimedean number fields (i.e. fields with non-Archimedean valuation). The main results are obtained for the fields of p-adic numbers and complex p-adic numbers. Already the simplest p-adic dynamical systems have a very rich structure. There exist attractors, Siegel disks and cycles. There also appear new structures such as fuzzy cycles. A prime number p plays the role of parameter of a dynamical system. The behavior of the iterations depends on this parameter...
Laureano González-Vega, Henri Lombardi (1992)
Extracta Mathematicae
Let K be an ordered field and R its real closure. A semipolynomial will be defined as a function from Rn to R obtained by composition of polynomial functions and the absolute value. Every semipolynomial can be defined as a straight-line program containing only instructions with the following type: polynomial, absolute value, sup and inf and such a program will be called a semipolynomial expression. It will be proved, using the ordinary real positivstellensatz, a general real positivstellensatz concerning...
Victor Alexandru, Nicolae Popescu, Alexandru Zaharescu (2003)
Journal de théorie des nombres de Bordeaux
Let be a prime number, the field of -adic numbers and the completion of the algebraic closure of . In this paper we obtain a representation theorem for rigid analytic functions on which are equivariant with respect to the Galois group , where is a lipschitzian element of and denotes the -neighborhood of the -orbit of .
Hans A. Keller, Herminia Ochsenius A. (1995)
Annales mathématiques Blaise Pascal
Lewis, David W., Scheiderer, Claus, Unger, Thomas (2001)
Documenta Mathematica
Masato Kurihara (1988)
Inventiones mathematicae
Hagen Knaf, Franz-Viktor Kuhlmann (2005)
Annales scientifiques de l'École Normale Supérieure
Stefaan Caenepeel (1981/1982)
Groupe de travail d'analyse ultramétrique
Ido Efrat (1991)
Forum mathematicum
Page 1 Next