Tree structure on the set of multiplicative semi-norms of Krasner algebras H(D).
Let K be an algebraically closed field, complete for an ultra- metric absolute value, let D be an infinite subset of K and let H(D) be the set of analytic elements on D. We denote by Mult(H(D), UD) the set of semi-norms Phi of the K-vector space H(D) which are continuous with respect to the topology of uniform convergence on D and which satisfy further Phi(f g)=Phi(f) Phi(g) whenever f,g elements of H(D) such that fg element of H(D). This set is provided with the topology of simple convergence....