Displaying 101 – 120 of 292

Showing per page

Ideal-theoretic characterizations of valuation and Prüfer monoids

Franz Halter-Koch (2004)

Archivum Mathematicum

It is well known that an integral domain is a valuation domain if and only if it possesses only one finitary ideal system (Lorenzen r -system of finite character). We prove an analogous result for root-closed (cancellative) monoids and apply it to give several new characterizations of Prüfer (multiplication) monoids and integral domains.

Intermediate domains between a domain and some intersection of its localizations

Mabrouk Ben Nasr, Noômen Jarboui (2002)

Bollettino dell'Unione Matematica Italiana

In this paper, we deal with the study of intermediate domains between a domain R and a domain T such that T is an intersection of localizations of R , namely the pair R , T . More precisely, we study the pair R , R d and the pair R , R ~ , where R d = R M M Max R , h t M = dim R and R ~ = R M M Max R , h t M 2 . We prove that, if R is a Jaffard domain, then R , R d n is a Jaffard pair, which generalize [5, Théorème 1.9]. We also show that if R is an S -domain, then R , R ~ is a residually algebraic pair (that is for each intermediate domain S between R and R ~ , if Q is a prime ideal of S ...

Intersections of essential minimal prime ideals

A. Taherifar (2014)

Commentationes Mathematicae Universitatis Carolinae

Let 𝒵 ( ) be the set of zero divisor elements of a commutative ring R with identity and be the space of minimal prime ideals of R with Zariski topology. An ideal I of R is called strongly dense ideal or briefly s d -ideal if I 𝒵 ( ) and I is contained in no minimal prime ideal. We denote by R K ( ) , the set of all a R for which D ( a ) ¯ = V ( a ) ¯ is compact. We show that R has property ( A ) and is compact if and only if R has no s d -ideal. It is proved that R K ( ) is an essential ideal (resp., s d -ideal) if and only if is an almost locally compact...

Irreducibility of ideals in a one-dimensional analytically irreducible ring

Valentina Barucci, Faten Khouja (2010)

Actes des rencontres du CIRM

Let R be a one-dimensional analytically irreducible ring and let I be an integral ideal of R . We study the relation between the irreducibility of the ideal I in R and the irreducibility of the corresponding semigroup ideal v ( I ) . It turns out that if v ( I ) is irreducible, then I is irreducible, but the converse does not hold in general. We collect some known results taken from [5], [4], [3] to obtain this result, which is new. We finally give an algorithm to compute the components of an irredundant decomposition...

Laskerian lattices

C. Jayaram (2003)

Czechoslovak Mathematical Journal

In this paper we investigate prime divisors, B w -primes and z s -primes in C -lattices. Using them some new characterizations are given for compactly packed lattices. Next, we study Noetherian lattices and Laskerian lattices and characterize Laskerian lattices in terms of compactly packed lattices.

Currently displaying 101 – 120 of 292