Displaying 141 – 160 of 292

Showing per page

On commutative rings whose prime ideals are direct sums of cyclics

M. Behboodi, A. Moradzadeh-Dehkordi (2012)

Archivum Mathematicum

In this paper we study commutative rings R whose prime ideals are direct sums of cyclic modules. In the case R is a finite direct product of commutative local rings, the structure of such rings is completely described. In particular, it is shown that for a local ring ( R , ) , the following statements are equivalent: (1) Every prime ideal of R is a direct sum of cyclic R -modules; (2) = λ Λ R w λ where Λ is an index set and R / Ann ( w λ ) is a principal ideal ring for each λ Λ ; (3) Every prime ideal of R is a direct sum of at most...

On domains with ACC on invertible ideals

Stefania Gabelli (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

If A is a domain with the ascending chain condition on (integral) invertible ideals, then the group I ( A ) of its invertible ideals is generated by the set I m ( A ) of maximal invertible ideals. In this note we study some properties of I m ( A ) and we prove that, if I ( A ) is a free group on I m ( A ) , then A is a locally factorial Krull domain.

On finitely generated multiplication modules

R. Nekooei (2005)

Czechoslovak Mathematical Journal

We shall prove that if M is a finitely generated multiplication module and A n n ( M ) is a finitely generated ideal of R , then there exists a distributive lattice M ¯ such that S p e c ( M ) with Zariski topology is homeomorphic to S p e c ( M ¯ ) to Stone topology. Finally we shall give a characterization of finitely generated multiplication R -modules M such that A n n ( M ) is a finitely generated ideal of R .

On minimal ideals in the ring of real-valued continuous functions on a frame

Abolghasem Karimi Feizabadi, Ali Akbar Estaji, Mostafa Abedi (2018)

Archivum Mathematicum

Let L be the ring of real-valued continuous functions on a frame L . The aim of this paper is to study the relation between minimality of ideals I of L and the set of all zero sets in L determined by elements of I . To do this, the concepts of coz-disjointness, coz-spatiality and coz-density are introduced. In the case of a coz-dense frame L , it is proved that the f -ring L is isomorphic to the f -ring C ( Σ L ) of all real continuous functions on the topological space Σ L . Finally, a one-one correspondence is...

Currently displaying 141 – 160 of 292