Loading [MathJax]/extensions/MathZoom.js
Let be a field, and the set of monomials of . It is well known that the set of monomial ideals of is in a bijective correspondence with the set of all subsemiflows of the -semiflow . We generalize this to the case of term ideals of , where is a commutative Noetherian ring. A term ideal of is an ideal of generated by a family of terms , where and are integers .
Let be a commutative ring with identity. If a ring is contained in an arbitrary union of rings, then is contained in one of them under various conditions. Similarly, if an arbitrary intersection of rings is contained in , then contains one of them under various conditions.
Currently displaying 1 –
4 of
4