Simple Galois extensions of two-dimensional affine rational domains
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Page 1
Peter Russell (1979)
Compositio Mathematica
Luigi Salce, Paolo Zanardo (1985)
Rendiconti del Seminario Matematico della Università di Padova
Raphael, R. (1999)
Theory and Applications of Categories [electronic only]
Erik Valtonen (1989)
Manuscripta mathematica
Noômen Jarboui (1999)
Colloquium Mathematicae
We introduce and study a new class of ring extensions based on a new formula involving the heights of their primes. We compare them with the classical altitude inequality and altitude formula, and we give another characterization of locally Jaffard domains, and domains satisfying absolutely the altitude inequality (resp., the altitude formula). Then we study the extensions R ⊆ S where R satisfies the corresponding condition with respect to S (Definition 3.1). This leads to a new characterization...
David F. Anderson, Said El Baghdadi, Muhammad Zafrullah (2010)
Actes des rencontres du CIRM
An extension of integral domains is strongly-compatible (resp., -compatible) if (resp., for every nonzero finitely generated fractional ideal of . We show that strongly -compatible implies -compatible and give examples to show that the converse does not hold. We also indicate situations where strong -compatibility and its variants show up naturally. In addition, we study integral domains such that is strongly -compatible (resp., -compatible) for every overring of .
Leslie G. Roberts, Balwant Singh (1993)
Compositio Mathematica
Atani, Shahabaddin Ebrahimi (2002)
International Journal of Mathematics and Mathematical Sciences
Tomaso Millevoi, Antonio Veluscek (1978)
Rendiconti del Seminario Matematico della Università di Padova
Farid Kourki (2009)
Annales mathématiques Blaise Pascal
Nous caractérisons les extensions triviales semiGoldie, de cogénération finie, mininjectives et quasi-Frobeniusiens. Comme application, nous montrons que tout anneau noethérien s’injecte dans un anneau quasi-Frobeniusien.
M. Oukessou, A. Miri (1999)
Extracta Mathematicae
Page 1