Root closure in commutative rings
Let be a commutative ring with identity and be the set of ideals with nonzero annihilator. The strongly annihilating-ideal graph of is defined as the graph with the vertex set and two distinct vertices and are adjacent if and only if and . In this paper, the perfectness of for some classes of rings is investigated.
Nous caractérisons les extensions triviales semiGoldie, de cogénération finie, mininjectives et quasi-Frobeniusiens. Comme application, nous montrons que tout anneau noethérien s’injecte dans un anneau quasi-Frobeniusien.