Relative Gorenstein injective covers with respect to a semidualizing module
Let be a commutative Noetherian ring and let be a semidualizing -module. We prove a result about the covering properties of the class of relative Gorenstein injective modules with respect to which is a generalization of Theorem 1 by Enochs and Iacob (2015). Specifically, we prove that if for every -injective module , the character module is -flat, then the class is closed under direct sums and direct limits. Also, it is proved that under the above hypotheses the class is covering....