Arithmetic euclidean rings
Cet article a pour objectif de présenter un algorithme permettant de montrer, à l’aide d’un ordinateur, l’euclidianité pour la norme du sous-corps réel maximal du corps cyclotomique où , corps totalement réel de degré et de discriminant , et plus précisément de prouver que . La méthode utilisée permet par ailleurs de prouver que pour , on a également (conjecture de H. Cohn et J. Deutsch). Les résultats relatifs à ce cas sont exposés en fin d’article.
We study ADC quadratic forms and Euclidean quadratic forms over the integers, obtaining complete classification results in the positive case.
We show that the S-Euclidean minimum of an ideal class is a rational number, generalizing a result of Cerri. In the proof, we actually obtain a slight refinement of this and give some corollaries which explain the relationship of our results with Lenstra's notion of a norm-Euclidean ideal class and the conjecture of Barnes and Swinnerton-Dyer on quadratic forms. In particular, we resolve a conjecture of Lenstra except when the S-units have rank one. The proof is self-contained but uses ideas from...
We study the Euclidean property for totally indefinite quaternion fields. In particular, we establish a complete list of norm-Euclidean such fields over imaginary quadratic number fields. This enables us to exhibit an example which gives a negative answer to a question asked by Eichler. The proofs are both theoretical and algorithmic.