Displaying 21 – 40 of 63

Showing per page

Families of functions dominated by distributions of C -classes of mappings

Goo Ishikawa (1983)

Annales de l'institut Fourier

A subsheaf of the sheaf Ω of germs C functions over an open subset Ω of R n is called a sheaf of sub C function. Comparing with the investigations of sheaves of ideals of Ω , we study the finite presentability of certain sheaves of sub C -rings. Especially we treat the sheaf defined by the distribution of Mather’s 𝒞 -classes of a C mapping.

Frobenius modules and Galois representations

B. Heinrich Matzat (2009)

Annales de l’institut Fourier

Frobenius modules are difference modules with respect to a Frobenius operator. Here we show that over non-archimedean complete differential fields Frobenius modules define differential modules with the same Picard-Vessiot ring and the same Galois group schemes up to extension by constants. Moreover, these Frobenius modules are classified by unramified Galois representations over the base field. This leads among others to the solution of the inverse differential Galois problem for p -adic differential...

Modules différentiels sur les couronnes

Gilles Christol, Bernard Dwork (1994)

Annales de l'institut Fourier

Dans cet article, nous étudions les modules libres de type fini sur l’anneau [ d / d x ] est l’anneau des éléments analytiques dans une couronne r 1 < | x | < r 2 de p . D’une part, nous définissons, pour chaque nombre r de [ r 1 , r 2 ] , un rayon de convergence “générique" et nous montrons que celui-ci dépend continûment de r . D’autre part, nous étudions l’existence et l’unicité d’un “antécédent de Frobenius".

Non-Leibniz algebras with logarithms do not have the trigonometric identity

D. Przeworska-Rolewicz (2000)

Banach Center Publications

Let X be a Leibniz algebra with unit e, i.e. an algebra with a right invertible linear operator D satisfying the Leibniz condition: D(xy) = xDy + (Dx)y for x,y belonging to the domain of D. If logarithmic mappings exist in X, then cosine and sine elements C(x) and S(x) defined by means of antilogarithmic mappings satisfy the Trigonometric Identity, i.e. [ C ( x ) ] 2 + [ S ( x ) ] 2 = e whenever x belongs to the domain of these mappings. The following question arises: Do there exist non-Leibniz algebras with logarithms such that...

Currently displaying 21 – 40 of 63