Previous Page 3

Displaying 41 – 56 of 56

Showing per page

Positive characteristic analogs of closed polynomials

Piotr Jędrzejewicz (2011)

Open Mathematics

The notion of a closed polynomial over a field of zero characteristic was introduced by Nowicki and Nagata. In this paper we discuss possible ways to define an analog of this notion over fields of positive characteristic. We are mostly interested in conditions of maximality of the algebra generated by a polynomial in a respective family of rings. We also present a modification of the condition of integral closure and discuss a condition involving partial derivatives.

Rational Constants of Generic LV Derivations and of Monomial Derivations

Janusz Zieliński (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

We describe the fields of rational constants of generic four-variable Lotka-Volterra derivations. Thus, we determine all rational first integrals of the corresponding systems of differential equations. Such systems play a role in population biology, laser physics and plasma physics. They are also an important part of derivation theory, since they are factorizable derivations. Moreover, we determine the fields of rational constants of a class of monomial derivations.

Retracts that are kernels of locally nilpotent derivations

Dayan Liu, Xiaosong Sun (2022)

Czechoslovak Mathematical Journal

Let k be a field of characteristic zero and B a k -domain. Let R be a retract of B being the kernel of a locally nilpotent derivation of B . We show that if B = R I for some principal ideal I (in particular, if B is a UFD), then B = R [ 1 ] , i.e., B is a polynomial algebra over R in one variable. It is natural to ask that, if a retract R of a k -UFD B is the kernel of two commuting locally nilpotent derivations of B , then does it follow that B R [ 2 ] ? We give a negative answer to this question. The interest in retracts comes...

Rings of constants of four-variable Lotka-Volterra systems

Janusz Zieliński (2013)

Open Mathematics

Lotka-Volterra systems appear in population biology, plasma physics, laser physics and derivation theory, among many others. We determine the rings of constants of four-variable Lotka-Volterra derivations with four parameters C 1, C 2, C 3, C 4 ∈ k, where k is a field of characteristic zero. Thus, we give a full description of polynomial first integrals of the respective systems of differential equations.

Rings of constants of generic 4D Lotka-Volterra systems

Janusz Zieliński, Piotr Ossowski (2013)

Czechoslovak Mathematical Journal

We show that the rings of constants of generic four-variable Lotka-Volterra derivations are finitely generated polynomial rings. We explicitly determine these rings, and we give a description of all polynomial first integrals of their corresponding systems of differential equations. Besides, we characterize cofactors of Darboux polynomials of arbitrary four-variable Lotka-Volterra systems. These cofactors are linear forms with coefficients in the set of nonnegative integers. Lotka-Volterra systems...

Some results on the kernels of higher derivations on k[x,y] and k(x,y)

Norihiro Wada (2011)

Colloquium Mathematicae

Let k be a field and k[x,y] the polynomial ring in two variables over k. Let D be a higher k-derivation on k[x,y] and D̅ the extension of D on k(x,y). We prove that if the kernel of D is not equal to k, then the kernel of D̅ is equal to the quotient field of the kernel of D.

The five-variable Volterra system

Janusz Zieliński (2011)

Open Mathematics

We give a description of all polynomial constants of the five-variable Volterra derivation, hence of all polynomial first integrals of its corresponding Volterra system of differential equations. The Volterra system plays a significant role in plasma physics and population biology.

The fourteenth problem of Hilbert for polynomial derivations

Andrzej Nowicki (2002)

Banach Center Publications

We present some facts, observations and remarks concerning the problem of finiteness of the rings of constants for derivations of polynomial rings over a commutative ring k containing the field ℚ of rational numbers.

Currently displaying 41 – 56 of 56

Previous Page 3