Previous Page 7

Displaying 121 – 131 of 131

Showing per page

The F4-algorithm for Euclidean rings

Afshan Sadiq (2010)

Open Mathematics

In this short note, we extend Faugére’s F4-algorithm for computing Gröbner bases to polynomial rings with coefficients in an Euclidean ring. Instead of successively reducing single S-polynomials as in Buchberger’s algorithm, the F4-algorithm is based on the simultaneous reduction of several polynomials.

The strong persistence property and symbolic strong persistence property

Mehrdad Nasernejad, Kazem Khashyarmanesh, Leslie G. Roberts, Jonathan Toledo (2022)

Czechoslovak Mathematical Journal

Let I be an ideal in a commutative Noetherian ring R . Then the ideal I has the strong persistence property if and only if ( I k + 1 : R I ) = I k for all k , and I has the symbolic strong persistence property if and only if ( I ( k + 1 ) : R I ( 1 ) ) = I ( k ) for all k , where I ( k ) denotes the k th symbolic power of I . We study the strong persistence property for some classes of monomial ideals. In particular, we present a family of primary monomial ideals failing the strong persistence property. Finally, we show that every square-free monomial ideal has the...

Towards the automated synthesis of a Gröbner bases algorithm.

Bruno Buchberger (2004)

RACSAM

We discuss the question of whether the central result of algorithmic Gröbner bases theory, namely the notion of S?polynomials together with the algorithm for constructing Gröbner bases using S?polynomials, can be obtained by ?artificial intelligence?, i.e. a systematic (algorithmic) algorithm synthesis method. We present the ?lazy thinking? method for theorem and algorithm invention and apply it to the ?critical pair / completion? algorithm scheme. We present a road map that demonstrates that, with...

Un algoritmo de descomposición de funciones racionales mediante polinomios casi-separados.

César Alonso, Jaime Gutiérrez, Tomás Recio (1996)

Extracta Mathematicae

Dado un polinomio f perteneciente a K[x], determinar si existen otros dos g y h de grado mayor que uno tales que f(x) = g(h(x)) = g o h, y, en caso de que existan, encontrarlos, es conocido como problema de descomposición para polinomios. Cuando dicha descomposición existe, problemas como la evaluación de f en un punto o la resolución de la ecuación f = 0 se pueden resolver de manera más simple. La generalización del problema de la descomposición al caso de funciones racionales es sin duda un problema...

Currently displaying 121 – 131 of 131

Previous Page 7