The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 121 –
131 of
131
In this short note, we extend Faugére’s F4-algorithm for computing Gröbner bases to polynomial rings with coefficients in an Euclidean ring. Instead of successively reducing single S-polynomials as in Buchberger’s algorithm, the F4-algorithm is based on the simultaneous reduction of several polynomials.
Let be an ideal in a commutative Noetherian ring . Then the ideal has the strong persistence property if and only if for all , and has the symbolic strong persistence property if and only if for all , where denotes the th symbolic power of . We study the strong persistence property for some classes of monomial ideals. In particular, we present a family of primary monomial ideals failing the strong persistence property. Finally, we show that every square-free monomial ideal has the...
We discuss the question of whether the central result of algorithmic Gröbner bases theory, namely the notion of S?polynomials together with the algorithm for constructing Gröbner bases using S?polynomials, can be obtained by ?artificial intelligence?, i.e. a systematic (algorithmic) algorithm synthesis method. We present the ?lazy thinking? method for theorem and algorithm invention and apply it to the ?critical pair / completion? algorithm scheme. We present a road map that demonstrates that, with...
Dado un polinomio f perteneciente a K[x], determinar si existen otros dos g y h de grado mayor que uno tales que f(x) = g(h(x)) = g o h, y, en caso de que existan, encontrarlos, es conocido como problema de descomposición para polinomios. Cuando dicha descomposición existe, problemas como la evaluación de f en un punto o la resolución de la ecuación f = 0 se pueden resolver de manera más simple. La generalización del problema de la descomposición al caso de funciones racionales es sin duda un problema...
À l’aide du Nullstellensatz effectif, on trouve des bornes inférieure et supérieure explicites des valeurs critiques non nulles d’un polynôme, en termes des coefficients de celui-ci.
Currently displaying 121 –
131 of
131