Syzygies and Koszul cohomology of smooth projective varieties for arbitrary dimension.
We consider subrings A of the ring of formal power series. They are defined by growth conditions on coefficients such as, for instance, Gevrey conditions. We prove preparation theorems of Malgrange type in these rings. As a consequence we study maps F from to without constant term such that the rank of the Jacobian matrix of F is equal to 1. Let be a formal power series. If F is a holomorphic map, the following result is well known: ∘ F is analytic implies there exists a convergent power series...
À l’aide du Nullstellensatz effectif, on trouve des bornes inférieure et supérieure explicites des valeurs critiques non nulles d’un polynôme, en termes des coefficients de celui-ci.