Fibrés vectoriels topologiques de rang élevé sur une hypersurface
The product of two Schubert classes in the quantum -theory ring of a homogeneous space is a formal power series with coefficients in the Grothendieck ring of algebraic vector bundles on . We show that if is cominuscule, then this power series has only finitely many non-zero terms. The proof is based on a geometric study of boundary Gromov-Witten varieties in the Kontsevich moduli space, consisting of stable maps to that take the marked points to general Schubert varieties and whose domains...