Page 1

Displaying 1 – 2 of 2

Showing per page

Almost Abelian regular dessins d'enfants

Ruben A. Hidalgo (2013)

Fundamenta Mathematicae

A regular dessin d'enfant, in this paper, will be a pair (S,β), where S is a closed Riemann surface and β: S → ℂ̂ is a regular branched cover whose branch values are contained in the set {∞,0,1}. Let Aut(S,β) be the group of automorphisms of (S,β), that is, the deck group of β. If Aut(S,β) is Abelian, then it is known that (S,β) can be defined over ℚ. We prove that, if A is an Abelian group and Aut(S,β) ≅ A ⋊ ℤ₂, then (S,β) is also definable over ℚ. Moreover, if A ≅ ℤₙ, then we provide explicitly...

Géométrie réelle des dessins d’enfant : une étude des composantes irréductibles

Layla Pharamond dit d’Costa (2005)

Journal de Théorie des Nombres de Bordeaux

Dans cet article nous nous intéressons aux propriétés des composantes irréductibles associées à la géométrie réelle d’un dessin d’enfant. Plus précisément, nous étudions les composantes irréductibles de la courbe Γ dont l’ensemble des points réels est l’image réciproque de P 1 ( R ) par une fonction de Belyi d’un dessin d’enfant.

Currently displaying 1 – 2 of 2

Page 1