Almost set-theoretic complete intersections in characteristic zero.
We present a class of toric varieties V which, over any algebraically closed field of characteristic zero, are defined by codim V +1 binomial equations.
We present a class of toric varieties V which, over any algebraically closed field of characteristic zero, are defined by codim V +1 binomial equations.
A Bochner-Martinelli-Koppelman type integral formula on submanifolds of pseudoconvex domains in Cn is derived; the result gives, in particular, integral formulas on Stein manifolds.
Let X ⊂ P6 be a smooth irreducible projective threefold, and d its degree. In this paper we prove that there exists a constant β such that for all X containing a smooth ruled surface as hyperplane section and not contained in a fourfold of degree less than or equal to 15, d ≤ β. Under some more restrictive hypothesis we prove an analogous result for threefolds containing a smooth ruled surface as hyperplane section and contained in a fourfold of degree less than or equal to 15.
We will consider codimension one holomorphic foliations represented by sections , and having a compact Kupka component . We show that the Chern classes of the tangent bundle of behave like Chern classes of a complete intersection 0 and, as a corollary we prove that is a complete intersection in some cases.