Displaying 181 – 200 of 212

Showing per page

Symmetries of holomorphic geometric structures on tori

Sorin Dumitrescu, Benjamin McKay (2016)

Complex Manifolds

We prove that any holomorphic locally homogeneous geometric structure on a complex torus of dimension two, modelled on a complex homogeneous surface, is translation invariant. We conjecture that this result is true in any dimension. In higher dimension, we prove it for G nilpotent. We also prove that for any given complex algebraic homogeneous space (X, G), the translation invariant (X, G)-structures on tori form a union of connected components in the deformation space of (X, G)-structures.

Uniqueness properties for spherical varieties

Ivan Losev (2010)

Les cours du CIRM

The goal of these lectures is to explain speaker’s results on uniqueness properties of spherical varieties. By a uniqueness property we mean the following. Consider some special class of spherical varieties. Define some combinatorial invariants for spherical varieties from this class. The problem is to determine whether this set of invariants specifies a spherical variety in this class uniquely (up to an isomorphism). We are interested in three classes: smooth affine varieties, general affine varieties,...

Currently displaying 181 – 200 of 212