Symmetric and exterior powers of homogeneous vector bundles.
Shrawan Kumar (1994)
Mathematische Annalen
M. van der Put, H. Voskuil (1992)
Journal für die reine und angewandte Mathematik
Sorin Dumitrescu, Benjamin McKay (2016)
Complex Manifolds
We prove that any holomorphic locally homogeneous geometric structure on a complex torus of dimension two, modelled on a complex homogeneous surface, is translation invariant. We conjecture that this result is true in any dimension. In higher dimension, we prove it for G nilpotent. We also prove that for any given complex algebraic homogeneous space (X, G), the translation invariant (X, G)-structures on tori form a union of connected components in the deformation space of (X, G)-structures.
Alexander Grothendieck (1960/1961)
Séminaire Bourbaki
Mikhail Borovoi (1995)
Journal für die reine und angewandte Mathematik
Mikhail Borovoi (1999)
Annales de la Faculté des sciences de Toulouse : Mathématiques
R. Hotta, N. Shimomura (1979)
Mathematische Annalen
S. Abeasis, A. Fra, H. del Kraft (1981)
Mathematische Annalen
Mikhail V. Borovoi (1992)
Journal für die reine und angewandte Mathematik
Walter Lawrence Griffith, Jr. (1982)
Colloquium Mathematicae
Dorothee Feldmüller (1989)
Manuscripta mathematica
Michel Brion (1996)
Banach Center Publications
van Hamel, Joost (2003)
Documenta Mathematica
Henning Haahr Andersen (1980)
Journal für die reine und angewandte Mathematik
Jon F. Carlson (1984)
Inventiones mathematicae
P. Brückmann, H.-G. Rackwitz (1990)
Mathematische Annalen
Friedrich Knop (1986)
Manuscripta mathematica
G. Dloussky (1988)
Mathematische Annalen
Takeshi Sato (1991)
Mathematische Annalen
Ivan Losev (2010)
Les cours du CIRM
The goal of these lectures is to explain speaker’s results on uniqueness properties of spherical varieties. By a uniqueness property we mean the following. Consider some special class of spherical varieties. Define some combinatorial invariants for spherical varieties from this class. The problem is to determine whether this set of invariants specifies a spherical variety in this class uniquely (up to an isomorphism). We are interested in three classes: smooth affine varieties, general affine varieties,...