Page 1

Displaying 1 – 13 of 13

Showing per page

A bound for the Milnor number of plane curve singularities

Arkadiusz Płoski (2014)

Open Mathematics

Let f = 0 be a plane algebraic curve of degree d > 1 with an isolated singular point at 0 ∈ ℂ2. We show that the Milnor number μ0(f) is less than or equal to (d−1)2 − [d/2], unless f = 0 is a set of d concurrent lines passing through 0, and characterize the curves f = 0 for which μ0(f) = (d−1)2 − [d/2].

Equivalence problem for minimal rational curves with isotrivial varieties of minimal rational tangents

Jun-Muk Hwang (2010)

Annales scientifiques de l'École Normale Supérieure

We formulate the equivalence problem, in the sense of É. Cartan, for families of minimal rational curves on uniruled projective manifolds. An important invariant of this equivalence problem is the variety of minimal rational tangents. We study the case when varieties of minimal rational tangents at general points form an isotrivial family. The main question in this case is for which projective variety Z , a family of minimal rational curves with Z -isotrivial varieties of minimal rational tangents...

Green's generic syzygy conjecture for curves of even genus lying on a K3 surface

Claire Voisin (2002)

Journal of the European Mathematical Society

We consider the generic Green conjecture on syzygies of a canonical curve, and particularly the following reformulation thereof: For a smooth projective curve C of genus g in characteristic 0, the condition Cliff C > l is equivalent to the fact that K g - l ' - 2 , 1 ( C , K C ) = 0 , l ' l . We propose a new approach, which allows up to prove this result for generic curves C of genus g ( C ) and gonality gon(C) in the range g ( C ) 3 + 1 gon(C) g ( C ) 2 + 1 .

The growth of regular functions on algebraic sets

A. Strzeboński (1991)

Annales Polonici Mathematici

We are concerned with the set of all growth exponents of regular functions on an algebraic subset V of n . We show that its elements form an increasing sequence of rational numbers and we study the dependence of its structure on the geometric properties of V.

Currently displaying 1 – 13 of 13

Page 1