Page 1

Displaying 1 – 3 of 3

Showing per page

Density of Morse functions on sets definable in o-minimal structures

Ta Lê Loi (2006)

Annales Polonici Mathematici

We present a tameness property of sets definable in o-minimal structures by showing that Morse functions on a definable closed set form a dense and open subset in the space of definable C p functions endowed with the Whitney topology.

Directional properties of sets definable in o-minimal structures

Satoshi Koike, Ta Lê Loi, Laurentiu Paunescu, Masahiro Shiota (2013)

Annales de l’institut Fourier

In a previous paper by Koike and Paunescu, it was introduced the notion of direction set for a subset of a Euclidean space, and it was shown that the dimension of the common direction set of two subanalytic subsets, called the directional dimension, is preserved by a bi-Lipschitz homeomorphism, provided that their images are also subanalytic. In this paper we give a generalisation of the above result to sets definable in an o-minimal structure on an arbitrary real closed field. More precisely, we...

Currently displaying 1 – 3 of 3

Page 1