Page 1

Displaying 1 – 11 of 11

Showing per page

Tame semiflows for piecewise linear vector fields

Daniel Panazzolo (2002)

Annales de l’institut Fourier

Let be a disjoint decomposition of n and let X be a vector field on n , defined to be linear on each cell of the decomposition . Under some natural assumptions, we show how to associate a semiflow to X and prove that such semiflow belongs to the o-minimal structure an , exp . In particular, when X is a continuous vector field and Γ is an invariant subset of X , our result implies that if Γ is non-spiralling then the Poincaré first return map associated Γ is also in an , exp .

Tangential Markov inequality in L p norms

Agnieszka Kowalska (2015)

Banach Center Publications

In 1889 A. Markov proved that for every polynomial p in one variable the inequality | | p ' | | [ - 1 , 1 ] ( d e g p ) ² | | p | | [ - 1 , 1 ] is true. Moreover, the exponent 2 in this inequality is the best possible one. A tangential Markov inequality is a generalization of the Markov inequality to tangential derivatives of certain sets in higher-dimensional Euclidean spaces. We give some motivational examples of sets that admit the tangential Markov inequality with the sharp exponent. The main theorems show that the results on certain arcs and surfaces,...

Triangulation in o-minimal fields with standard part map

Lou van den Dries, Jana Maříková (2010)

Fundamenta Mathematicae

In answering questions of J. Maříková [Fund. Math. 209 (2010)] we prove a triangulation result that is of independent interest. In more detail, let R be an o-minimal field with a proper convex subring V, and let st: V → k be the corresponding standard part map. Under a mild assumption on (R,V) we show that a definable set X ⊆ Vⁿ admits a triangulation that induces a triangulation of its standard part st X ⊆ kⁿ.

Currently displaying 1 – 11 of 11

Page 1