Loading [MathJax]/extensions/MathZoom.js
Let be a disjoint decomposition of and let be a vector field
on , defined to be linear on each cell of the decomposition . Under
some natural assumptions, we show how to associate a semiflow to and prove that such
semiflow belongs to the o-minimal structure . In particular,
when is a continuous vector field and is an invariant subset of ,
our result implies that if is non-spiralling then the Poincaré first
return map associated is also in .
We give another proof of the fact that any semialbraic curve admits a tangential Markov inequality. We establish this inequality on semialgebraic surfaces with finitely many singular points.
In 1889 A. Markov proved that for every polynomial p in one variable the inequality is true. Moreover, the exponent 2 in this inequality is the best possible one. A tangential Markov inequality is a generalization of the Markov inequality to tangential derivatives of certain sets in higher-dimensional Euclidean spaces. We give some motivational examples of sets that admit the tangential Markov inequality with the sharp exponent. The main theorems show that the results on certain arcs and surfaces,...
In answering questions of J. Maříková [Fund. Math. 209 (2010)] we prove a triangulation result that is of independent interest. In more detail, let R be an o-minimal field with a proper convex subring V, and let st: V → k be the corresponding standard part map. Under a mild assumption on (R,V) we show that a definable set X ⊆ Vⁿ admits a triangulation that induces a triangulation of its standard part st X ⊆ kⁿ.
Currently displaying 1 –
11 of
11