Displaying 101 – 120 of 471

Showing per page

Diagonal series of rational functions

Sławomir Cynk, Piotr Tworzewski (1991)

Annales Polonici Mathematici

Some representations of Nash functions on continua in ℂ as integrals of rational functions of two complex variables are presented. As a simple consequence we get close relations between Nash functions and diagonal series of rational functions.

Directional properties of sets definable in o-minimal structures

Satoshi Koike, Ta Lê Loi, Laurentiu Paunescu, Masahiro Shiota (2013)

Annales de l’institut Fourier

In a previous paper by Koike and Paunescu, it was introduced the notion of direction set for a subset of a Euclidean space, and it was shown that the dimension of the common direction set of two subanalytic subsets, called the directional dimension, is preserved by a bi-Lipschitz homeomorphism, provided that their images are also subanalytic. In this paper we give a generalisation of the above result to sets definable in an o-minimal structure on an arbitrary real closed field. More precisely, we...

Discriminant Sets of Families of Hyperbolic Polynomials of Degree 4 and 5

Kostov, Vladimir (2002)

Serdica Mathematical Journal

∗ Research partially supported by INTAS grant 97-1644A real polynomial of one real variable is hyperbolic (resp. strictly hyperbolic) if it has only real roots (resp. if its roots are real and distinct). We prove that there are 116 possible non-degenerate configurations between the roots of a degree 5 strictly hyperbolic polynomial and of its derivatives (i.e. configurations without equalities between roots). The standard Rolle theorem allows 286 such configurations. To obtain the result we study...

Distance géodésique sur un sous-analytique.

Krzystof Kurdyka, Patrice Orro (1997)

Revista Matemática de la Universidad Complutense de Madrid

Pour un ensemble sous-analytique, connexe fermé, la distance géodésique est atteinte et est uniformément équivalente, avec des constantes arbitrairement proches de 1, à une distance sous-analytique.

Division of Distributions by Locally Definable Quasianalytic Functions

Krzysztof Jan Nowak (2010)

Bulletin of the Polish Academy of Sciences. Mathematics

We demonstrate that the Łojasiewicz theorem on the division of distributions by analytic functions carries over to the case of division by quasianalytic functions locally definable in an arbitrary polynomially bounded, o-minimal structure which admits smooth cell decomposition. Hence, in particular, the principal ideal generated by a locally definable quasianalytic function is closed in the Fréchet space of smooth functions.

Divisors in global analytic sets

Francesca Acquistapace, A. Díaz-Cano (2011)

Journal of the European Mathematical Society

We prove that any divisor Y of a global analytic set X n has a generic equation, that is, there is an analytic function vanishing on Y with multiplicity one along each irreducible component of Y . We also prove that there are functions with arbitrary multiplicities along Y . The main result states that if X is pure dimensional, Y is locally principal, X / Y is not connected and Y represents the zero class in H q - 1 ( X , 2 ) then the divisor Y is globally principal.

Embedding of real varieties and their subvarieties into Grassmannians.

M. A. Buchner (1995)

Revista Matemática de la Universidad Complutense de Madrid

Given a compact affine nonsingular real algebraic variety X and a nonsingular subvariety Z C X belonging to a large class of subvarieties, we show how to embed X in a suitable Grassmannian so that Z becomes the transverse intersection of the zeros of a section of the tautological bundle on the Grassmannian.

Enumeration of real conics and maximal configurations

Erwan Brugallé, Nicolas Puignau (2013)

Journal of the European Mathematical Society

We use floor decompositions of tropical curves to prove that any enumerative problem concerning conics passing through projective-linear subspaces in P n is maximal. That is, there exist generic configurations of real linear spaces such that all complex conics passing through these constraints are actually real.

Équisingularité réelle II : invariants locaux et conditions de régularité

Georges Comte, Michel Merle (2008)

Annales scientifiques de l'École Normale Supérieure

On définit, pour un germe d’ensemble sous-analytique, deux nouvelles suites finies d’invariants numériques. La première a pour termes les localisations des courbures de Lipschitz-Killing classiques, la seconde est l’équivalent réel des caractéristiques évanescentes complexes introduites par M. Kashiwara. On montre que chaque terme d’une de ces suites est combinaison linéaire des termes de l’autre, puis on relie ces invariants à la géométrie des discriminants des projections du germe sur des plans...

Equivalence of analytic and rational functions

J. Bochnak, M. Buchner, W. Kucharz (1997)

Annales Polonici Mathematici

We give a criterion for a real-analytic function defined on a compact nonsingular real algebraic set to be analytically equivalent to a rational function.

Currently displaying 101 – 120 of 471