The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper we prove the implicit function theorem for locally blow-analytic
functions, and as an interesting application of using blow-analytic homeomorphisms, we
describe a very easy way to resolve singularities of analytic curves.
We consider 2-dimensional semialgebraic topological manifolds from the differentialgeometric point of view. Curvatures at singularities are defined and a Gauss-Bonnet formula holds. Moreover, Aleksandrov's axioms for an intrinsic geometry of surfaces are fulfilled.
The aim of this paper is to prove the theorem on invariance of domain in an arbitrary o-minimal structure. We do not make use of the methods of algebraic topology and the proof is based merely on some basic facts about cells and cell decompositions.
We describe the notion of a weakly Lipschitz mapping on a stratification. We also distinguish a class of regularity conditions that are in some sense invariant under definable, locally Lipschitz and weakly bi-Lipschitz homeomorphisms. This class includes the Whitney (B) condition and the Verdier condition.
We construct invariants under deformation of real symplectic four-manifolds. These invariants are obtained by counting three different kinds of real rational -holomorphic curves which realize a given homology class and pass through a given real configuration of (the appropriate number of) points. These curves are cuspidal curves, reducible curves and curves with a prescribed tangent line at some real point of the configuration. They are counted with respect to some sign defined by the parity of...
We prove a sufficient condition for the Jacobian problem in the setting of real, complex and mixed polynomial mappings. This follows from the study of the bifurcation locus of a mapping subject to a new Newton non-degeneracy condition.
Currently displaying 1 –
11 of
11