A septic with 99 real nodes
In this article we describe our experiences with a parallel Singular implementation of the signature of a surface singularity defined by z N + g(x; y) = 0.
We present algorithms and their implementation in the computer algebra system Singular 2.0 for the computation of equations for moduli spaces for semiquasihomogeneous singularities w.r.t. right equivalence. In addition, we describe the structure of the stabilizer group of Brieskorn-Pham singularities.
Let be a germ of a complete intersection variety in , , having an isolated singularity at and be the germ of a holomorphic vector field having an isolated zero at and tangent to . We show that in this case the homological index and the GSV-index coincide. In the case when the zero of is also isolated in the ambient space we give a formula for the homological index in terms of local linear algebra.