Page 1

Displaying 1 – 2 of 2

Showing per page

Sur la structure du groupe d'automorphismes de certaines surfaces affines.

Stéphane Lamy (2005)

Publicacions Matemàtiques

We describe the structure of the group of algebraic automorphisms of the following surfaces 1) P1,k x P1,k minus a diagonal; 2) P1,k x P1,k minus a fiber. The motivation is to get a new proof of two theorems proven respectively by L. Makar-Limanov and H. Nagao. We also discuss the structure of the semi-group of polynomial proper maps from C2 to C2.

Symmetric Jacobians

Michiel Bondt (2014)

Open Mathematics

This article is about polynomial maps with a certain symmetry and/or antisymmetry in their Jacobians, and whether the Jacobian Conjecture is satisfied for such maps, or whether it is sufficient to prove the Jacobian Conjecture for such maps. For instance, we show that it suffices to prove the Jacobian conjecture for polynomial maps x + H over ℂ such that satisfies all symmetries of the square, where H is homogeneous of arbitrary degree d ≥ 3.

Currently displaying 1 – 2 of 2

Page 1