Constructing copositive matrices from interior matrices.
The paper presents, mainly, two results: a new proof of the spectral properties of oscillatory matrices and a transversality theorem for diffeomorphisms of Rn with oscillatory jacobian at every point and such that NM(f(x) - f(y)) ≤ NM(x - y) for all elements x,y ∈ Rn, where NM(x) - 1 denotes the maximum number of sign changes in the components zi of z ∈ Rn, where all zi are non zero and z varies in a small neighborhood of x. An application to a semiimplicit discretization of the scalar heat equation...
Let be a tree with vertices. To each edge of we assign a weight which is a positive definite matrix of some fixed order, say, . Let denote the sum of all the weights lying in the path connecting the vertices and of . We now say that is the distance between and . Define , where is the null matrix and for , is the distance between and . Let be an arbitrary connected weighted graph with vertices, where each weight is a positive definite matrix of order . If and...
We consider the primitive two-colored digraphs whose uncolored digraph has vertices and consists of one -cycle and one -cycle. We give bounds on the exponents and characterizations of extremal two-colored digraphs.