Loading [MathJax]/extensions/MathZoom.js
We describe the stable module categories of the self-injective finite-dimensional algebras of finite representation type over an algebraically closed field which are Calabi-Yau (in the sense of Kontsevich).
In a highly influential paper, Bidigare, Hanlon and Rockmore showed that a number of popular Markov chains are random walks on the faces of a hyperplane arrangement. Their analysis of these Markov chains took advantage of the monoid structure on the set of faces. This theory was later extended by Brown to a larger class of monoids called left regular bands. In both cases, the representation theory of these monoids played a prominent role. In particular, it was used to compute the spectrum of the...
We describe the structure of artin algebras for which all cycles of indecomposable finitely generated modules are finite and all Auslander-Reiten components are semiregular.
We describe the structure of artin algebras for which all cycles of indecomposable modules are finite and almost all indecomposable modules have projective or injective dimension at most one.
Currently displaying 1 –
5 of
5