Loading [MathJax]/extensions/MathZoom.js
We establish when the partial orders and coincide for all modules of the same dimension from the additive category of a generalized standard almost cyclic coherent component of the Auslander-Reiten quiver of a finite-dimensional algebra.
Comparing the bounded derived categories of an algebra and of the endomorphism algebra of a given support -tilting module, we find a relation between the derived dimensions of an algebra and of the endomorphism algebra of a given -tilting module.
Let Λ be an artin algebra. We prove that for each sequence of non-negative integers there are only a finite number of isomorphism classes of indecomposables , the bounded derived category of Λ, with for all i ∈ ℤ and E(X) the endomorphism ring of X in if and only if , the bounded derived category of the category of all left Λ-modules, has no generic objects in the sense of [4].
We construct derived equivalences between generalized matrix algebras. We record several corollaries. In particular, we show that the -replicated algebras of two derived equivalent, finite-dimensional algebras are also derived equivalent.
Currently displaying 1 –
5 of
5