Lattices over curve singularities with large conductor.
We study a connection between left-right projective bimodules and stable equivalences of Morita type for finite-dimensional associative algebras over a field. Some properties of the category of all finite-dimensional left-right projective bimodules for self-injective algebras are also given.
We build up a multiplicative basis for a locally adequate concordant semigroup algebra by constructing Rukolaĭne idempotents. This allows us to decompose the locally adequate concordant semigroup algebra into a direct product of primitive abundant [...] 0-J*-simple semigroup algebras. We also deduce a direct sum decomposition of this semigroup algebra in terms of the [...] ℛ*-classes of the semigroup obtained from the above multiplicative basis. Finally, for some special cases, we provide a description...