The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We give a complete description of finite-dimensional selfinjective algebras of Euclidean tilted type over an algebraically closed field whose all nonperiodic Auslander-Reiten components are almost regular. In particular, we describe the tame selfinjective finite-dimensional algebras whose all nonperiodic Auslander-Reiten components are almost regular and generalized standard.
We classify all tame self/injective algebras having simply connected Galois coverings and the stable Auslander-Reiten quivers consisting of stable tubes. Moreover, the classification of nondomestic polynomial growth standard self/injective algebras is completed.
We develop the representation theory of selfinjective algebras which admit Galois coverings by the repetitive algebras of algebras whose derived category of bounded complexes of finite-dimensional modules is equivalent to the derived category of coherent sheaves on a weighted projective line with virtual genus greater than one.
Assume that K is an arbitrary field. Let (I,⪯) be a poset of finite prinjective type and let KI be the incidence K-algebra of I. A classification of all sincere posets of finite prinjective type with three maximal elements is given in Theorem 2.1. A complete list of such posets consisting of 90 diagrams is presented in Tables 2.2. Moreover, given any sincere poset I of finite prinjective type with three maximal elements, a complete set of pairwise non-isomorphic sincere indecomposable prinjective...
Let A be a special biserial algebra over an algebraically closed field. We show that the first Hohchshild cohomology group of A with coefficients in the bimodule A vanishes if and only if A is representation-finite and simply connected (in the sense of Bongartz and Gabriel), if and only if the Euler characteristic of Q equals the number of indecomposable non-uniserial projective-injective A-modules (up to isomorphism). Moreover, if this is the case, then all the higher Hochschild cohomology groups...
We study the simple connectedness and strong simple connectedness of the following classes of algebras: (tame) coil enlargements of tame concealed algebras and n-iterated coil enlargement algebras.
Let A = kQ/I be a finite dimensional basic algebra over an algebraically closed field k presented by its quiver Q with relations I. A fundamental problem in the representation theory of algebras is to decide whether or not A is of tame or wild type. In this paper we consider triangular algebras A whose quiver Q has no oriented paths. We say that A is essentially sincere if there is an indecomposable (finite dimensional) A-module whose support contains all extreme vertices of Q. We prove that if...
By an extension algebra of a finite-dimensional K-algebra A we mean a Hochschild extension algebra of A by the dual A-bimodule . We study the problem of when extension algebras of a K-algebra A are symmetric. (1) For an algebra A= KQ/I with an arbitrary finite quiver Q, we show a sufficient condition in terms of a 2-cocycle for an extension algebra to be symmetric. (2) Let L be a finite extension field of K. By using a given 2-cocycle of the K-algebra L, we construct a 2-cocycle of the K-algebra...
We classify (up to Morita equivalence) all symmetric special biserial algebras of Euclidean type, by algebras arising from Brauer graphs.
Currently displaying 1 –
13 of
13