Die absteigende Loewy-Länge von Endomorphismenringen.
We prove a stronger form, , of a consistency result, , due to Eklof and Shelah. concerns extension properties of modules over non-left perfect rings. We also show (in ZFC) that does not hold for left perfect rings.
Let X be a class or R-modules containing 0 and closed under isomorphic images. With any such X we associate three classes ΓX, FX and ΔX. The study of some of the closure properties of these classes allows us to obtain characterization of Artinian modules dualizing results of Chatters. The theory of Dual Glodie dimension as developed by the author in some of his earlier work plays a crucial role in the present paper.
Right ue-rings (rings with the property of the title, i.e., with the maximality of the right socle) are investigated. It is shown that a semiprime ring R is a right ue-ring if and only if R is a regular V-ring with the socle being a maximal right ideal, and if and only if the intrinsic topology of R is non-discrete Hausdorff and dense proper right ideals are semisimple. It is proved that if R is a right self-injective right ue-ring (local right ue-ring), then R is never semiprime and is Artin semisimple...
If M is a simple module over a ring R then, by the Schur's lemma, the endomorphism ring of M is a division ring. However, the converse of this result does not hold in general, even when R is artinian. In this short note, we consider perfect rings for which the converse assertion is true, and we show that these rings are exactly the primary decomposable ones.