Radical properties of perfect modules.
A weak basis of a module is a generating set of the module minimal with respect to inclusion. A module is said to be regularly weakly based provided that each of its generating sets contains a weak basis. We study (1) rings over which all modules are regularly weakly based, refining results of Nashier and Nichols, and (2) regularly weakly based modules over Dedekind domains.
We show that practically all the properties of almost perfect rings, proved by Bazzoni and Salce [Colloq. Math. 95 (2003)] for commutative rings, also hold in the non-commutative setting.