On automorphisms of Weyl algebra
Let be a commutative ring and a given multiplicative set. Let be a strictly ordered monoid satisfying the condition that for every . Then it is shown, under some additional conditions, that the generalized power series ring is -Noetherian if and only if is -Noetherian and is finitely generated.
In this article we introduce and study the concept of α-almost Artinian modules. We show that each α-almost Artinian module M is almost Artinian (i.e., every proper homomorphic image of M is Artinian), where α ∈ {0,1}. Using this concept we extend some of the basic results of almost Artinian modules to α-almost Artinian modules. Moreover we introduce and study the concept of α-Krull modules. We observe that if M is an α-Krull module then the Krull dimension of M is either α or α + 1.