Notes on -derivations.
Let be a prime ring, with no non-zero nil right ideal, a non-zero drivation of , a non-zero two-sided ideal of . If, for any , , there exists such that , then is commutative. As a consequence we extend the result to Lie ideals.
Let be a semiprime ring and an additive mapping such that holds for all . Then is a left centralizer of . It is also proved that Jordan centralizers and centralizers of coincide.
Let be a -torsion free -prime ring, a derivation which commutes with and a -Jordan ideal and a subring of . In this paper, it is shown that if either acts as a homomorphism or as an anti-homomorphism on , then or . Furthermore, an example is given to demonstrate that the -primeness hypothesis is not superfluous.
Let be a -prime left near-ring with multiplicative center , a -derivation on is defined to be an additive endomorphism satisfying the product rule for all , where and are automorphisms of . A nonempty subset of will be called a semigroup right ideal (resp. semigroup left ideal) if (resp. ) and if is both a semigroup right ideal and a semigroup left ideal, it be called a semigroup ideal. We prove the following results: Let be a