Notes on -derivations.
Aydin, Neşet (1997)
International Journal of Mathematics and Mathematical Sciences
Vincenzo De Filippis (2002)
Bollettino dell'Unione Matematica Italiana
Let be a prime ring, with no non-zero nil right ideal, a non-zero drivation of , a non-zero two-sided ideal of . If, for any , , there exists such that , then is commutative. As a consequence we extend the result to Lie ideals.
Hisao Tominaga (1983)
Publications de l'Institut Mathématique
Tominaga, Hisao (1983)
Publications de l'Institut Mathématique. Nouvelle Série
Fisher, Joe W., Fahmy, Mohamed H. (1985)
International Journal of Mathematics and Mathematical Sciences
Borut Zalar (1991)
Commentationes Mathematicae Universitatis Carolinae
Let be a semiprime ring and an additive mapping such that holds for all . Then is a left centralizer of . It is also proved that Jordan centralizers and centralizers of coincide.
Abujabal, H.A.S., Khan, M.A. (1992)
International Journal of Mathematics and Mathematical Sciences
Howard E. Bell (1983)
Aequationes mathematicae
Howard E. Bell (1983)
Aequationes mathematicae
H. A. S. Abujabal, M. A. Khan, M. S. Khan, Mohammad S. Samman (1993)
Czechoslovak Mathematical Journal
Abujabal, H.A.S., Khan, M.S. (1990)
International Journal of Mathematics and Mathematical Sciences
Vukman, Joso, Kosi-Ulbl, Irena (2004)
International Journal of Mathematics and Mathematical Sciences
De Filippis, Vincenzo (2004)
International Journal of Mathematics and Mathematical Sciences
Szeto, George, Ma, Linjun (1991)
International Journal of Mathematics and Mathematical Sciences
Bell, Howard E., Yaqub, Adil (2007)
International Journal of Mathematics and Mathematical Sciences
Lahcen Oukhtite (2010)
Commentationes Mathematicae Universitatis Carolinae
Let be a -torsion free -prime ring, a derivation which commutes with and a -Jordan ideal and a subring of . In this paper, it is shown that if either acts as a homomorphism or as an anti-homomorphism on , then or . Furthermore, an example is given to demonstrate that the -primeness hypothesis is not superfluous.
Zaidi, S.M.A., Ashraf, Mohammad, Ali, Shakir (2004)
International Journal of Mathematics and Mathematical Sciences
Gölbaşı, Öznur, Kaya, Kazım (2006)
Sibirskij Matematicheskij Zhurnal
Ágnes Szendrei (1978)
Colloquium Mathematicae
Öznur Golbaşi, Neşet Aydin (2007)
Archivum Mathematicum
Let be a -prime left near-ring with multiplicative center , a -derivation on is defined to be an additive endomorphism satisfying the product rule for all , where and are automorphisms of . A nonempty subset of will be called a semigroup right ideal (resp. semigroup left ideal) if (resp. ) and if is both a semigroup right ideal and a semigroup left ideal, it be called a semigroup ideal. We prove the following results: Let be a