On rings with prime centers.
Let be a 2-torsion free prime ring and let be automorphisms of . For any , set . Suppose that is a -derivation defined on . In the present paper it is shown that if satisfies , then either or is commutative if is a nonzero ideal of such that , for all , and commutes with both and , then either or is commutative. if is a nonzero ideal of such that , for all , and commutes with , then is commutative. Finally a related result has been obtain for -derivation....
Let n ≥ 3 be a positive integer. We study symmetric skew n-derivations of prime and semiprime rings and prove that under some certain conditions a prime ring with a nonzero symmetric skew n-derivation has to be commutative.